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Abstract We apply a modified phase-field modeling

approach to the analysis of steps on a crystalline surface.

Specifically, we are interested in capturing phenomena

associated with the interaction between steps. To this end,

we assign a physical significance to the form of the inter-

facial region between terraces (i.e. steps), inherent in the

phase field approach, by tuning the multi-well potential to

produce long-range interaction energies varying as 1/l2,

where l is half the distance between steps. Resultant

repulsive interactions between adjacent steps of the same

sign are shown to affect step-flow kinetics in a manner

consistent with curvature-driven interfacial relaxation. This

phenomenon is further demonstrated to cause dislocation-

driven (spiral) crystal growth kinetics to deviate, for large

supersaturation and Burgers vector values, from the clas-

sical quadratic growth law. Attractive interactions between

adjacent steps of opposite sign, also resulting from the

finite interfacial width, are briefly explored particularly

with respect to their possible impact on two-dimensional

nucleation.

Introduction

The physics of advancing or receding crystalline surfaces

involves phenomena spanning multiple spatial and tem-

poral scales. Continuum modeling of such systems is lim-

ited to the analysis of relatively large time intervals

and length scales. Short time-and-length scale physics,

naturally modeled using a non-continuum approach (e.g.

Monte Carlo or Molecular Dynamics), is typically

accounted for in this case via the use of relevant transport

and kinetic coefficients. One important small-scale physi-

cal phenomenon involves the entropic fluctuations of steps

on crystalline surfaces, which are responsible for a form of

step–step interaction that can be implemented in continuum

models.

Although motivated by the need to include physics

associated with step fluctuations in a continuum phase-field

model of a crystalline surface, in this article we focus on all

types of long-range effects (including fluctuations) whose

contribution to the step energy is given by:

cint ¼ b=l2; ð1Þ

where l is the half terrace width and b is an interaction

coefficient; relevant physics includes dipolar, elastic, and

entropic interaction mechanisms. Dipolar step–step inter-

actions (e.g. [1]) are a result of the formation of electric

dipoles along steps, elastic interactions (e.g. [1–3]) are

related to the overlap of strain fields associated with dif-

ferent steps, and entropic step–step interactions (e.g. [2])

are a result of entropic fluctuations of each step within the

region defined by its nearest neighbors. In a real system it

is often difficult to determine the relative contribution of

each of these different mechanisms whose combined effect

results in an overall interaction coefficient. A positive

value of this coefficient (b), representing repulsive step–

step interactions, is consistent with entropic and elastic

(and sometimes dipolar) interactions between steps of the

same sign (Fig. 1a). For the case of steps of opposite sign

(Fig. 1b) b can be modeled as negative thereby rendering

the interaction energy attractive in nature. This is relevant

in certain cases of elastic interactions. In addition, entropic

fluctuations are known to affect the annihilation of adjacent

steps of opposite sign; it has been argued that this
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phenomenon can be modeled as an effective attractive

interaction [4]. Also, note that the observation in [5] that

the time for annihilation is proportional to l4 is consistent

with the specific form of Eq. 1. Having said that, and fol-

lowing [4], we suggest that the 1/l2 attraction should be

treated with caution as no more than a phenomenological

rule which, as suggested below, could be modified in future

applications.

Continuum modeling of vicinal surfaces is often based

on the basic Burton-Cabrera-Frank (BCF) model [6], which

originally involved the analysis of step flow while

accounting for phenomena such as surface diffusion, step

attachment kinetics, and the effect of energy associated

with steps. Later versions of this approach involved the

implementation of additional physical effects such as the

Ehrlich–Schwoebel barrier and interaction with the bulk

phase. The incorporation of step–step interaction of the

type given by Eq. 1 within the framework of continuum

modeling is typically limited to the case of one-dimen-

sional (1-D) analyses of crystalline surfaces involving the

explicit tracking of all steps in the system (see e.g. [7, 8]).

Explicit tracking of steps can, however, be avoided by the

application of the phase-field method when modeling such

problems.

The phase-field method (see e.g. [9, 10]) is a powerful

technique often applied in the investigation of crystal

growth and solidification (see e.g. [11, 12]) as well as other

systems exhibiting non-trivial evolution of microstructure

(e.g. grain growth [13, 14]). An important feature of this

approach, involving a diffuse interface approximation

(whose position and thickness is determined by the spatial

variation of an appropriate order parameter), is its ability to

address topological changes in the system of interest

without explicitly tracking the birth, evolution, and anni-

hilation of interfaces between phases.

During the last decade and a half, the phase-field method

was adapted for modeling the evolution of steps on a

crystal surface (e.g. [15–19]). In these phase-field models,

involving multi-well (in place of double-well) potentials,

terraces (separated by diffuse steps) play the role of the

different phases. Following the early study of Liu and

Metiu [15] on the BCF model for step trains, more complex

phenomena such as spiral growth [16], the Ehrlich–

Schwoebel barrier [17–19], certain elastic effects [17, 20]

as well as a combination of spiral growth with an additional

non-trivial phenomenon [21, 22] were modeled using this

type of approach.

In this article, we present a further development of the

phase-field formulation for stepped crystalline surfaces,

involving changes in the form of the multi-well potential.

The resultant modification in the shape of the interface

between neighboring terraces (i.e. steps) induces step–step

interactions consistent with Eq. 1. The development of this

approach and its application in a number of sample prob-

lems is discussed below.

Theory and computational details

Our approach is based on existing phase-field modeling

techniques (see e.g. [19]) described in Eqs. 2–12 and

henceforth referred to as ‘‘classical.’’. Using these classical

methods, the value of the phase-field parameter (/) can be

related to the height of the crystal surface, above a refer-

ence plane, in units of single step-height (hst). Integer

values of the phase-field parameter correspond to the

height of terraces while intermediate (non-integer) values

of / are associated with the vertical surface position within

steps. It is convenient to describe the phase-field parameter,

whose values are limited to the set of non-negative real

numbers, as a sum of two parameters given by:

nð/Þ ¼ b/c; wð/Þ ¼ /� nð/Þ; ð2Þ

where the first part of the equation involves the floor

function [23] which, in this case, defines n(/) as the

highest integer less than or equal to /; the remaining

fractional part of / is given by w(/).

The spatio-temporal evolution of the phase-field parameter

is derived by relating its local rate of change to the variation of

the free-energy functionalF describing the system and given,

in our case, by the following volumetric integral:

Fð/Þ ¼
Z

V

f ð/Þ þ n2

2
jr/j2

� �
dV ; ð3Þ

where f(/) is the free-energy density function of a

homogeneous system, the second term on the right-hand

side (RHS) is associated with the step energy and n is its

characteristic constant. The free-energy density is defined

as a superposition of two terms:

(a) (b)Fig. 1 Schematic illustration of

steps on the surface. The gray
region marks the domain of

interest. a Steps of the same

sign (in a step train). b Steps of

opposite sign
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f ð/Þ ¼ Wgð/Þ � kpð/Þr; ð4Þ

where g(/) is a multi-well potential [19] whose (zero valued)

minima are associated with integer values of / (i.e. / = n):

gð/Þ ¼ wð/Þ2½1� wð/Þ�2: ð5Þ

The second term on the RHS of Eq. 4, which corresponds

to the reduction in energy due to solidification in a super-

saturated environment, involves the level of supersatura-

tion denoted by r. In this article we assume negligible

resistance to mass transport feeding the evolving steps; i.e.

step flow is limited by kinetics of molecular attachment to

the steps (see e.g. [24] for a review of crystal growth

mechanisms). As a result of this assumption, the super-

saturation on the surface is spatially uniform; we further

limit it to be time-independent (i.e. r = constant).

In Eq. 4 p(/) (see e.g. [25]) is a monotonically

increasing function which, on terraces (/ = n), returns the

value of the phase-field parameter (i.e. p(n) = n) and is

thereby associated with the local number of solid layers

above a reference plane. An appropriate choice for p(/) is:

pð/Þ ¼ 6wð/Þ5 � 15wð/Þ4 þ 10wð/Þ3 þ nð/Þ; ð6Þ

where, other than the above-mentioned (p(n) = n) condi-

tion, this fifth-order polynomial enforces zero first and

second derivatives of p(/) on terraces. Looking at Eqs. 4

and 5, it can be understood that the zero first derivative

condition on p(/) yields extrema in f(/) at integer values

of / for any value of r, and due to the zero second

derivative condition these extrema are in fact stable min-

ima (for further details see e.g. [26]).

The equation describing the spatio-temporal evolution

of /, corresponding to Eqs. 3 and 4 is given by [19]:

s
o/
ot
¼ n2D/�Wg0ð/Þ þ kp0ð/Þr; ð7Þ

where g0(/) and p0(/) are given by:

g0ð/Þ ¼ 2wð/Þ½1� wð/Þ�½1� 2wð/Þ� ð8Þ

and

p0ð/Þ ¼ 30wð/Þ4 � 60wð/Þ3 þ 30wð/Þ2: ð9Þ

The step energy corresponding to this equation, for the

case of straight steps, can be computed by the following

integral in the direction orthogonal to the steps [27]:

cst0
¼
Z1

�1

n2

2
jr/j2 þWgð/Þ

� �
dx ¼ a1n

ffiffiffiffiffi
W
p

; ð10Þ

where

a1 ¼
ffiffiffi
2
p Z1

0

ffiffiffiffiffiffiffiffiffiffi
gð/Þ

p
d/; ð11Þ

which, when using the classical g(/) (given by Eq. 5),

results in a1 ¼ 1

3
ffiffi
2
p : The step energy is related to the

Gibbs–Thomson coefficient according to Cst ¼ cst0
=k: In

addition, the phase-field parameters n, W, k, and s are

related to Cst, cst0
; the step kinetic coefficient b1 and the

width of transition region w via Eq. 10 as well as (e.g.

[27]):

w ¼ 1

a1

nffiffiffiffiffi
W
p ; Cst ¼ a1

n
ffiffiffiffiffi
W
p

k
; b ¼ 1

a1

kn

s
ffiffiffiffiffi
W
p : ð12Þ

The classical solution can be used only for low step

densities, l � w. For moderate to high values of step

density, an interaction between adjacent steps (caused by

the finite value of w) may impact the system’s behavior.

We next explore this artifact with the aim of using it to

achieve physically meaningful step–step interactions.

Modifications to the classical approach

We start by proposing a new general form for the multi-

well potential based on the influence of its shape on the

above-mentioned interaction between steps. We note that

g(/) should have equal-valued minima for all cases where

/ = n(/) = i, i = 0, 1,..., N while reaching a maximum

value at some point in the range i \/\ i ? 1, i = 0, 1,...,

N - 1 for every value of i in a system involving N steps

(i.e. at some point on every step). In the classical case

(corresponding to Eq. 5), the local shape of g(/) near

every minimum varies as a quadratic function of the

deviation D/i:/ - i where i = 0, 1,..., N corresponds to

the value of / at the relevant minimum. As shown below,

our goal of obtaining physically realistic long-range inter-

action between steps requires that we increase the order of

the local dependence of g(/) on D/i near the minima.

Let us consider the following multi-well potential:

gð/Þ ¼ wð/Þa; wð/Þ\1=2

1� wð/Þ½ �a; wð/Þ� 1=2

�
; ð13Þ

where a is an arbitrary parameter a[ 2, which directly

defines the order of the local dependence of g(/) on D/i

near every minimum and, as discussed above and shown

below, governs the step–step interaction law.

Step–step interaction corresponding to the potential

given by Eq. 13 is determined by calculating the depen-

dence of step energy on the distance between steps. For this

purpose, the 1-D domain [-l, l], with a single step at its

center, is considered. Approximate time-independent 1-D

solutions of Eq. 7 for /(x), corresponding to the stepped

surfaces depicted in Fig. 1, are obtained for relatively large

1 The product of the step kinetic coefficient (b) and the supersatu-

ration (r) is, for straight and non-interacting steps, the step velocity.
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spacings between steps. Relevant boundary conditions are

given by:

/ð�lÞ ¼ 1; /ðlÞ ¼ 0; ð14Þ

for the case shown in Fig. 1a, and

ox/jx¼�l ¼ ox/jx¼l ¼ 0; ð15Þ

for the case shown in Fig. 1b. In the following, we sum-

marize the results of our analysis of this problem; a more

complete description is provided in Appendix 1.

The step energy is now described by the equation:

cst ¼ cst0
þ cint; ð16Þ

where cst0
is the energy for the case of l ? ? (given by

Eq. 10) and cint is a step–step interaction energy. Our

analysis shows that this interaction energy is positive

(repulsive) in the case of Fig. 1a, is negative (attractive) in

the case of Fig. 1b, and (in both cases) depends on the

step–step distance according to:

cint ¼ bi=lp; p � aþ 2

a� 2
; ð17Þ

where physically meaningful interactions correspond to

p [ 0. The interaction coefficient bi is given by:

br ¼ 4W2q�2a
r n�2a� � 1

2�ap�1; ð18Þ

for the case of repulsive interactions (Fig. 1a) and by:

ba ¼ � 4W2q�2a
a n�2a� � 1

2�ap�1; ð19Þ

for the case of attractive interactions (Fig. 1b). The

parameters qr and qa, appearing in these equations, are

given by:

qr ¼ p�1=2C 1=2� 1=að ÞC 1þ 1=að Þ; ð20Þ

and

qa ¼ �p1=2Cð1=2� 1=aÞ=Cð�1=aÞ; ð21Þ

where C(z) is the Euler gamma function.2 Finally, looking

at Eqs. 18–21, it can be shown that the ratio of the

interaction constants is fixed and depends only on a
according to:

br=ba ¼ � sin
p
a

	 
 2a
2�a
: ð22Þ

It is interesting to note that the repulsive step–step

interaction energy, important in step-trains, switches from

being proportional to 1/lp for large l values to being

proportional to 1/l for small values of l. Specifically, the

interaction energy for relatively large vicinalities (small l)

is given by:

cint ¼ n2=4l; ð23Þ

a result which depends only on n and not on the shape of

the multi-well potential.

Thus far, we have described a new multi-well potential

g(/). An appropriate choice for p(/) should follow the

same principles governing the selection of the form given

by Eq. 6 in the case of the classical model. Using these

principles, we choose a simple relation given by:

pð/Þ ¼
0:5 wð/Þ

0:5

h iaþ1

þ nð/Þ; wð/Þ\1=2

1� 0:5 1�wð/Þ
0:5

h iaþ1

þ nð/Þ; wð/Þ� 1=2

8><
>: :

ð24Þ

As in the case of Eq. 6 in the classical approach, the

modified p(/) given by Eq. 24 is a monotonically

increasing function which returns the value of the phase

field parameter on terraces (p(n) = n) and guarantees the

existence of stable minima in f(/) (given by Eqs. 4 and 13)

at integer values of / for any value of r. Note that applying

Eq. 6, when using the new g(/) given by Eq. 13, does not

guarantee this behavior of f(/) at integer values of /.

Following the above derivation of Eq. 17, we propose

the use of the potential given by Eq. 13 with a = 6 as a

method for simulating long-range interactions described by

Eq. 1 (equivalent to Eq. 17 with p = 2). In this case,

Eqs. 18–21 yield interaction coefficients given by:

br ¼
0:975n3ffiffiffiffiffi

W
p ; ba ¼ �

0:122n3ffiffiffiffiffi
W
p ; ð25Þ

where, according to Eq. 22, br/ba = -8.0. We do, how-

ever, realize the physically relevant necessity for the pos-

sibility of varying this ratio as a function of physical

parameters and, although beyond the scope of this article,

we speculate that it should be possible to achieve this via

further adjustments in the definition of g(/).

One of the main reasons we chose the specific form of g(/)

in Eq. 13 was that it enables the above analytical treatment

leading to Eqs. 17–23. However, the rapid rise in g(/) near

the maxima in the potential (w(/) = 0.5) leads to significant

grid-refinement requirements when attempting numerical

analysis of Eq. 7. As stated above, we find that the main factor

influencing step–step interaction is the behavior of g(/) near

its minima. We therefore replace Eq. 13, for wc \w(/) \
1 - wc (i.e. far from the minima), by a simple constant valued

interpolating function yielding (for this case of a = 6):

gð/Þ ¼
wð/Þ6; wð/Þ�wc

w6
c ; wc\wð/Þ\1� wc

1� wð/Þ½ �6; wð/Þ� 1� wc

8<
: : ð26Þ

We used wc = 0.35, where further increase in the value of

this parameter as well as using higher order interpolating2 Since a[ 2 both qr and qa are well defined positive numbers.
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polynomials (see Appendix 2) did not significantly change

our results; it is important to note that in this case (fol-

lowing Eq. 11), a1 = 0.0288013. It is finally important to

mention that in all calculations reported in this article the

function p(/), given in this case by Eq. 24 with a = 6, did

not cause numerical difficulties. Moreover, three alterna-

tive forms of p(/) (see Appendix 2) were found to yield

results almost identical to those obtained using Eq. 24.

In the next section, we present solutions of a number of

problems, described by Eq. 7, using an explicit finite dif-

ference scheme. In all cases discussed here (1-D and 2-D),

we employed a hyperbolic tangent phase-field parameter

profile, centered around the initial position of the step, as

an initial condition; results were found to be independent of

the details of this initial shape. In addition, also in all cases

discussed here, we employed a spatial discretization of

dx = 0.125 nm, a time step equal to dt = 0.0625 ls, and

physical parameters given by hst = 0.5 nm, b = 10-4 m/s,

cst0
¼ 10�11 J/m; Cst = 0.47 nm, gr = 0.3684 nm, and

ga = -0.1842 nm, where gi �
ffiffiffiffiffiffiffiffiffi
bi=k3

p
(i = r, a). Finally,

note that periodic boundary conditions were applied in the

2-D simulations.

Results and discussion

We verify our approach using a 1-D simulation of the

movement of a single step trapped, within a step train,

between two adjacent (i.e. repulsing) steps under the con-

dition of zero supersaturation. In this case, the computa-

tional domain (0 \ x \ ld) is comprised of two half-

terraces on either side of the step. Relevant boundary

conditions for Eq. 7 are given by:

/jx¼0 ¼ 1; /jx¼ld
¼ 0; ð27Þ

and the initial step position, consistent with / = 0.5 and

denoted by xst = x0, corresponds to a step–step spacing

(terrace width) of 2x0 on the left and 2(ld - x0) on the

right. A comparison between our numerical calculation and

the integration of an analytical expression for the step

velocity, given in [7] by:

vst ¼ bg3
r

1

x3
st

� 1

ðld � xstÞ3

 !
; ð28Þ

is presented in Fig. 2a. Since x0 \ ld/2 the repulsive force

from the left is larger than the one from the right resulting

in the step moving to the right until it reaches the equi-

librium position of xst = ld/2. Notice the high level of

matching between the solutions considering the relatively

coarse discretization (ld = 6.25 nm = 50dx). In addition,

note that the matching between the analytical and numer-

ical solutions demonstrates how our use of an interpolating

function for g(/) far from the minima does not influence

step–step interaction.

A second 1-D calculation explores the attractive force

between steps in a configuration involving steps of alter-

nating signs (i.e. a corrugated surface of the type shown in

Fig. 1b) also under the condition of zero supersaturation.

The boundary conditions for Eq. 7 are in this case:

ox/jx¼0 ¼ ox/jx¼ld
¼ 0; ð29Þ

where due to symmetry we need only solve for one of the

steps. Initially, /|x=0 = 1 and /jx¼ld
¼ 0 and the step

position is xst = x0 corresponding to interstep spacings of

2x0 on the left and 2(ld - x0) on the right. The analytical

solution for the step velocity is in this case also given by

Eq. 28 though with ga replacing gr. The time-dependent

position of the step is plotted in Fig. 2b. According to the

initial condition (x0 \ ld/2), the step is more strongly

attracted to the left and therefore accelerates in this

direction toward its ultimate annihilation (xst = 0). As in

the previous test a good agreement between numerical

computations and theory is observed.

The classical theory of spiral growth, which is based on

analysis of processes in the vicinity of a dislocation core,

predicts [6] a quadratic dependence of crystal growth rate

on supersaturation. However, this theory assumes a con-

stant value for the step energy. It is therefore reasonable to

believe that, when the step density near the dislocation core

is large enough, step–step interactions may cause a devi-

ation from the classical growth law. As is evident from our

2-D simulations (Fig. 3) a deviation from the classical law

(a) (b)Fig. 2 Step position versus

time. Symbols correspond to

numerical results and the solid
line to the analytical solution.

The domain size is given by

ld = 6.25 nm. a Repulsion in a

step train, x0 = 1.313 nm.

b Attraction in a corrugated

surface, x0 = 2.938 nm
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is seen for relatively large supersaturation (r) and Burgers

vector (B) values. Indeed the step density does increase

with an increase in the value of these two parameters.

Considering the fact that using alternative forms of p(/)

(see Appendix 2) does not significantly change this result

suggests that this deviation from the classical theory is

dominated by the form of g(/). Finally, it is interesting to

note that the resultant retardation of crystal growth stands

in contrast to the acceleration of growth expected when

2-D nucleation of new layers occurs on the surface (see e.g.

[28]).

We next consider two adjacent circular nominally super-

critical nuclei and compare their behavior to that of a single

nucleus; both these cases are contrasted with that of a

single nucleus calculated with the classical model (with

g(/) given by Eq. 5 and p(/) given by Eq. 6) using the

same physical parameters and with a transition region

width (see Eq. 12) given by w = 0.75 nm. The initial

radius of each nucleus, the level of supersaturation, and the

initial distance between the centers of the two neighboring

nuclei are, respectively, r0 = 2.0 nm, r = 0.239, and

d = 8 nm. As expected (Fig. 4a), the isolated nucleus

modeled using the classical approach grows with time

since its initial radius is larger than the calculated critical

value ðrc0
¼ Cst=r ¼ 1:97 nmÞ: As shown in Fig. 4b, it is

surprising to observe the shrinking of the isolated nucleus,

modeled with our modified phase-field model, whose initial

radius is (as in the case shown in Fig. 4a) also larger than

the classical critical value. This observation can be

explained when considering that, due to self-attraction of

the circular step, the true critical radius value is actually

larger than rc0
and, in this case, even larger than r0.

Increasing r0 will eventually lead to a truly super-critical

nucleus which will grow with time.

In contrast to the shrinking single nucleus, it is inter-

esting to observe (Fig. 4c) the growth and coalescence of

Fig. 3 Spiral growth rate versus supersaturation for two different

values of the Burgers vector: B = 1 (solid line and filled circle
symbols) and B = 3 (dashed line and filled square symbols). Lines
correspond to the classical spiral growth law Vn = b hstr

2/(19Cst) and

symbols are due to our simulations. The domain size is 25 9 25 nm2

(a)

(b)

(c)

Fig. 4 Evolution of 2-D nuclei.

a Isolated nucleus calculated

with classical model (g(/) and

p(/), respectively, given by

Eqs. 5 and 6). b Isolated

nucleus calculated with

modified model (g(/) and p(/),

respectively, given by Eqs. 13

and 24 with a = 6). c Two

adjacent nuclei calculated with

modified model (g(/) and p(/),

respectively, given by Eqs. 13

and 24 with a = 6); notice the

non-circular (asymmetric) shape

of the adjacent nuclei as they

become close one to the other.

Domain size is 30 9 25 nm2
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two adjacent nuclei. The attractive interaction between the

two particles acts in favor of their growth, despite the fact

(discussed above) that isolated particles of the same initial

size (r0 = 2.0 nm) are effectively sub-critical. As in the

case of spiral growth, using alternative forms of p(/) (see

Appendix 2) does not significantly change these results,

thereby indicating that the observed deviation from clas-

sical theory is primarily a result of the chosen form of g(/).

Finally, it should be noted that these results demonstrate

the possible non-trivial impact of attractive interactions,

within and between nuclei, on 2-D nucleation processes.

Conclusions

We have assigned a physical significance to the form of the

terrace–terrace interfacial region inherent in phase-field

modeling of steps on a crystal surface. Specifically, the

multi-well potential g(/) was modified to obtain a (low-

step density) step–step interaction energy proportional to

1/lp, repulsive for steps of the same sign and attractive for

steps of opposite sign. We investigated the physically rel-

evant case of p = 2, first verifying the algorithm via 1-D

simulations, next demonstrating the retardation of spiral

growth due to repulsive interactions at high B and r values

and finally presenting evidence for non-trivial impact of

attractive interactions on 2-D nucleation phenomena.

In this article, we have taken r to be constant. This

assumption could however be relaxed, e.g. in the case of

crystal growth from solution with significant resistance to

mass transport of the solute feeding the evolving steps (e.g.

[29]). In such a case, Eq. 7 should be coupled with an

additional partial differential equation describing the

transport of the nutrient to the steps. This is similar in spirit

to the approach used in the phase-field model of epitaxy

described in [19].

Theories for step–step interactions are usually based on

the analysis of straight steps. Although we tuned our model

to agree with the 1/l2 law for straight steps at relatively

large distances, the 2-D simulations inherently include the

effect of curvature which does require further analysis. In

addition, we speculate that the fixed nature of br/ba as well

as the 1/l2 rule for attractive interactions may possibly be

modified (without changing the nature of repulsive inter-

actions) by further adjustments to g(/). Finally, we suggest

that the general nature of our approach (involving modifi-

cations in g(/) and associated adjustments to p(/)) should

make it applicable to a wide range of problems. These may

involve interactions between surfaces of 3-D solid particles

as well as those existing in nano-scale liquid systems (see

e.g. [30, 31]).
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Appendix 1: derivation of step–step interaction

parameters

In this appendix we provide details of the analytical

treatment leading to the derivation of Eqs. 17–23. We first

start with the derivation of the case of repulsing steps in a

step train, consistent with Fig. 1a and described by the

stationary 1-D solution of Eq. 7 in the spatial interval [-l,

l] with boundary conditions given by Eq. 14. Our goal is to

demonstrate how our choice of g(/), given by Eq. 13, leads

to the desired power law dependence of step–step inter-

action energy on the distance between steps. Moreover, we

wish to find the relation between the parameters of the

interaction law and those appearing in Eqs. 7 (s, n, W, k)

and 13 (a).

The stationary 1-D version of Eq. 7, with the assump-

tion of relatively low supersaturation values (kr � W and

kr � n2) is given by:

n2 d2/
dx2
�Wg0ð/Þ ¼ 0: ð30Þ

This equation can be re-written and integrated according

to:

n2

Z
d/
dx

d
d/
dx

� �
¼ W

Z
dgð/Þ; ð31Þ

which, while remembering that g(/(l)) = 0, yields:

n2

2

d/
dx

� �2

¼ Wgð/Þ þ n2

2
Gr; ð32Þ

where Gr � d/
dx jx¼l

	 
2

:
Taking the square root of both sides of Eq. 32, while

remembering that in this case d/
dx \0; rearranging the

results and integrating between x = 0 (/ = 1/2) and x = l

(/ = 0) yields:

l ¼ n
Z1=2

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ þ n2Gr

q

¼ n
Z1

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W ~gð/Þ þ n2Gr

q � n
Z1

1=2

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W ~gð/Þ þ n2Gr

q ;

ð33Þ

where ~gð/Þ � /a: Assuming a relatively large distance

between steps (Gr � 2W=ð2an2Þ) we now obtain:
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l ¼ n
Z1

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W/a þ n2Gr

p � n
Z1

1=2

d/ffiffiffiffiffiffiffiffiffiffiffiffi
2W/a

p

¼ qrffiffiffiffiffiffi
Gr

p n2Gr

2W

� �1=a

� 2
a�1

2

a� 2

nffiffiffiffiffi
W
p ; ð34Þ

where qr is defined in Eq. 20.

The step energy is now calculated using the equation:

cst ¼
Z l

�l

n2

2

d/
dx

� �2

þWgð/Þ
" #

dx: ð35Þ

This equation is next re-written, with the help of Eq. 32

while remembering that d/
dx \0; to yield:

cst ¼
Z l

�l

n2 d/
dx

� �2

� n2

2
Gr

" #
dx

¼ n
Z�l

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ þ n2Gr

q
d/
dx

dx� n2Grl

¼ n
Z1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ þ n2Gr

q
d/� n2Grl: ð36Þ

We next compare the first term of this result with Eq. 33,

while accounting for symmetry with respect to / = 0.5

and remembering our assumption of a relatively large

distance between steps. It can be seen this term is

proportional to the integral of Eq. 33 with respect to Gr.

With this information, together with Eq. 34, we can see

that:

cst ¼ 2n
Z1=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ þ n2Gr

q
d/� n2Grl

¼ n2

ZGr

0

lðG	r ÞdG	r � n2Grlþ cst0

¼ n2

ZGr

0

qrffiffiffiffiffiffi
G	r

p n2G	r
2W

� �1=a

dG	r �
2

a�1
2

a� 2

n3ffiffiffiffiffi
W
p Gr

� n2Grlþ cst0
; ð37Þ

where cst0
is the constant of integration (with respect to Gr)

which corresponds to the value of the step energy in the

limit of l?? (Gr?0) in which case step–step interactions

disappear. Equation 37 is further simplified (with the aid of

Eq. 34 to yield:

cst ¼
2a

2þ a
n2Gr lþ 2

a�1
2

a� 2

nffiffiffiffiffi
W
p

 !
� 2

a�1
2

a� 2

n3ffiffiffiffiffi
W
p Gr

� n2Grlþ cst0
: ð38Þ

Remembering (see Eq. 16) that cint ¼ cst � cst0
and

inserting the dependence of Gr on l (extracted from

Eq. 34) into Eq. 38 yields the following expression for the

step–step interaction energy:

cint ¼
a� 2

aþ 2

� �
n2 lþ 2

a�1
2

a� 2

nffiffiffiffiffi
W
p

 !
Gr

¼ a� 2

aþ 2

� �
2W

ðnqrÞa
� � 2

2�a

lþ 2
a�1

2

a� 2

nffiffiffiffiffi
W
p

 !2þa
2�a

¼ br lþ 2
a�1

2

a� 2

nffiffiffiffiffi
W
p

 !2þa
2�a

; ð39Þ

where br is given by Eq. 18. Remembering the above

assumption of relatively large distance between steps

ðGr � 2W=ð2an2ÞÞ; we can see that for l� 2
a�1

2

a�2
nffiffiffiffi
W
p we

obtain, from Eq. 39, the power law given by Eq. 17.

We next return to Eq. 33 and consider now the case of

short distances between steps ðGr � 2W=ð2an2ÞÞ: With

this assumption it is easy to show that

l ¼ ð4GrÞ�1=2; ð40Þ

and following Eq. 36 one can show (with the above short

step–step distance assumption) that:

cst ¼ n2
ffiffiffiffiffiffi
Gr

p
� Grl

	 

; ð41Þ

and, after inserting Gr(l) from Eq. 40 into Eq. 41 we obtain:

cst ¼ n2 1=ð2lÞ � l=ð4l2Þ
� �

¼ 0:25n2=l: ð42Þ

Now Gr � 2W=ð2an2Þ� 2Wgð/Þ=n2 (for all values of /),

and as a result n2 ffiffiffiffiffiffi
Gr

p
� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ

p
(for all values of /).

Therefore,
R 1=2

0
n2 ffiffiffiffiffiffi

Gr

p
d/�

R 1=2

0
n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wgð/Þ

p
d/ and, due

to symmetry with respect to / = 0.5, n2 ffiffiffiffiffiffi
Gr

p
�ffiffiffi

2
p R 1

0

ffiffiffiffiffiffiffiffiffiffi
gð/Þ

p
d/

	 

n
ffiffiffiffiffi
W
p

: Comparing with Eqs. 10 and 11,

we see that we have obtained n2 ffiffiffiffiffiffi
Gr

p
� cst0

: Using Gr(l)

from Eq. 40 we further understand that n2/(2l) � cst0
and,

with the aid of Eq. 42, it is reasonable to conclude that

cst� cst0
which means that the step energy is dominated by

step–step interactions and Eq. 42 is equivalent to Eq. 23.

Finally, we address the case of attracting steps, consis-

tent with Fig. 1b and described by the stationary 1-D

solution of Eq. 7 in the spatial interval [ - l,l] with

boundary conditions given by Eq. 15. Our starting point is

Eq. 30 which, when remembering d/
dx jx¼l ¼ 0 yields:
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n2

2

d/
dx

� �2

¼ Wgð/Þ �WGa; ð43Þ

where Ga:g(/(x))|x=l. Following the same approach used

in the derivation of Eqs. 33 and 34 we next isolate l under

the assumption that Ga � 1
2a while understanding that

d/
dx \0; x = 0 corresponds to / = 1/2 and x = l

corresponds to /(l) = Ga
1/a. The result is given by:

l ¼ n
Z1=2

G
1=a
a

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð/a � GaÞ

p

¼ n
Z1

G
1=a
a

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð/a � GaÞ

p � n
Z1

1=2

d/ffiffiffiffiffiffiffiffiffiffiffiffi
2W/a

p

¼ nqaffiffiffiffiffiffiffi
2W
p G

2�a
2a

a �
2

a�1
2

a� 2

nffiffiffiffiffi
W
p ; ð44Þ

where qa is defined in Eq. 21.

We next start with the definition of the step energy given

by Eq. 35 and following the same logic as in the case of step–

step repulsion, with the aid of Eq. 43, we can show that:

cst ¼
Z l

�l

n2 d/
dx

� �2

þWGa

" #
dx

¼ n
Z�l

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W gð/Þ � Ga½ �

p d/
dx

dxþ 2WGal

¼ 2n
Z1=2

G
1=a
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W gð/Þ � Ga½ �

p
d/þ 2WGal; ð45Þ

which is further simplified to become:

cst ¼� 2W

ZGa

0

lðG	aÞdG	a þ 2WGalþ cst0

¼� 2W

ZGa

0

nqaffiffiffiffiffiffiffi
2W
p G	a

2�a
2a dG	a þ

2
aþ1

2

a� 2
n
ffiffiffiffiffi
W
p

Ga

þ 2WGalþ cst0

¼� 2a
2þ a

nqa

ffiffiffiffiffiffiffi
2W
p

G
2þa
2a

a þ
2

aþ1
2

a� 2
n
ffiffiffiffiffi
W
p

Ga

þ 2WGalþ cst0
: ð46Þ

Inserting Ga(l) from Eq. 44 and recalling Eq. 16, we obtain

the interaction energy:

cint ¼
2� a
aþ 2

� �
2W

ðnqaÞa
� � 2

2�a

lþ 2
a�1

2

a� 2

nffiffiffiffiffi
W
p

 !2þa
2�a

¼ ba lþ 2
a�1

2

a� 2

nffiffiffiffiffi
W
p

 !2þa
2�a

; ð47Þ

where ba is given by Eq. 19. Here, as in the case of

repulsion, the assumption of large step–step distances

ðGa � 1
2a ; l� 2

a�1
2

a�2
nffiffiffiffi
W
p Þ renders Eq. 47 equivalent to the

power law given by Eq. 17.

Appendix 2: testing alternative forms of g(/) and p(/)

In the text we discuss the replacement of Eq. 13, for

wc \ w(/) \ 1 - wc, by a simple constant valued inter-

polating function yielding g(/) given by Eq. 26. In addition

to varying the value of wc (mentioned in the text), we tested

the sensitivity of the model to this interpolating function

using a more general alternative to Eq. 26 given by:

gð/Þ ¼
wð/Þ6; wð/Þ�wc

Rm
i¼0ciwð/Þi 1� wð/Þ½ �i; wc\wð/Þ\1� wc

1� wð/Þ½ �6; wð/Þ� 1� wc

8<
: ;

ð48Þ

with ci determined by enforcing continuity in g(/) and its

derivatives (up to order m) at wc and 1 - wc. For a given

level of supersaturation, and physical parameter values,

results with m = 0 (in which case Eq. 48 is equivalent to

Eq. 26) were found to be virtually the same as those

achieved with m = 3.

Results presented in Figs. 3 and 4 were reproduced using

three alternative forms for p(/), all of which are mono-

tonically increasing functions which return the value of the

phase-field parameter on terraces (p(n) = n) and guarantee

the existence of stable minima in f(/) (given by Eqs. 4

and 13) at integer values of / for any value of r. In the first

case, Eq. 24 (with a = 6) was modified using a linear

interpolation in the region wc \ w(/) \ 1 - wc, yielding:

pð/Þ¼

0:5 wð/Þ
0:5

h i7

þnð/Þ; wð/Þ�wc

0:5 wc

0:5

	 
7

þnð/Þþ wð/Þ�wc½ �
2 1�2wcð Þ


 2� 1�wc

0:5

	 
7

� wc

0:5

	 
7
� �

; wc\wð/Þ\1�wc

1�0:5 1�wð/Þ
0:5

h i7

þnð/Þ; wð/Þ�1�wc

8>>>>>>>><
>>>>>>>>:

:

ð49Þ

The second case, given by:

pð/Þ¼

0:25
wð/Þ
0:5

h i7

þnð/Þ; wð/Þ�wc

0:25
wc

0:5

	 
7

þnð/Þþ wð/Þ�wc½ �
4 1�2wcð Þ


 4� 1�wc

0:5

	 
7

� wc

0:5

	 
7
� �

; wc\wð/Þ\1�wc

1�0:25
1�wð/Þ

0:5

h i7

þnð/Þ; wð/Þ�1�wc

8>>>>>>>><
>>>>>>>>:

;

ð50Þ
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is similar in form to Eq. 49 except for the fact that the

power law terms are pre-multiplied by a factor of 0.25

rather than by a factor of 0.5. Note that in Eq. 24 the factor

of 0.5 is necessary for continuity at / = 0.5 (where

p(0.5) = 0.5). Notice also that the specific forms of the

linear part of p(/) in Eqs. 49 and 50 (in the region

wc \ w(/) \ 1 - wc) guarantees continuity of this func-

tion for all values of / (where here too p(0.5) = 0.5).

The last alternative form of p(/) is given by

pð/Þ ¼
0:5 wð/Þ

0:5

h i8

þ nð/Þ; wð/Þ\1=2

1� 0:5 1�wð/Þ
0:5

h i8

þ nð/Þ; wð/Þ� 1=2

8><
>: ; ð51Þ

where in this case the exponent of the power law was

increased. Repeating calculations for the cases involving a

non-zero value of supersaturation (presented in Figs. 3 and

4), using all three alternative forms of p(/) (Eqs. 49–51

with wc = 0.35), yielded results virtually the same as those

obtained using Eq. 24.
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